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Abstract-In this paper we analyse the transient condensation process of saturated vapor in contact with 
one surface of a vertical thin plate, caused by a uniform cooling rate on the other surface of the plate, 
applied at a time t = 0. The effects of longitudinal and transversal heat conduction, as well as the thermal 
inertia for the plate, are considered. The nondimensional governing equations are reduced to a system of 
four partial differential equations with six nondimensional parameters. The transient evolution of the 
condensed layer thickness and the temperature of the plate are obtained using different realistic limits, 

including the cases of very good and poor conducting plates. Copyright 0 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

Since the classical work of Nusselt [ 11, the theoretical 
studies of laminar film condensation have received 
considerable attention in the literature. By equating the 
gravity and viscous forces, Nusselt obtained the con- 
densed layer thickness of a saturated vapor in contact 
with a vertical plate of uniform temperature, showing 
good qualitative agreement with experimental obser- 
vations for normal engineering fluids. In general, the 
development in this area has been concentrated to 
those investigations in which the relative importance 
of the additional complicating factors is revealed. In 
this sense, the natural convection condensation pro- 
cess on vertical plates is not an exceptional case and 
relevant analysis including inertia, convection and 
shear stress effects at the condensate surface, shows 
that the simple Nusselt results are surprisingly accu- 
rate over a wide range of conditions. Particular con- 
tribution on this issue comes from Rohsenow [2], 
where he modified Nusselt’s analysis including the 
energy convection in the heat balance equation. How- 
ever, his analysis did not include the inertial forces in 
a similar way, as was made by Bromley [3], by other 
alternative procedures. 

In an effort to obtain a better approximation, Spar- 
row and Gregg [4], introducing a boundary layer 
treatment and similarity transformations of the gov- 
erning equations, showed numerically that the inertial 
effects on heat transfer are not important if the Prandtl 
number is larger or equal to 10, and was quite small 
for even a Prandtl number of order unity. Later, Chen 
[5] solved integral forms of the boundary layer equa- 
tions by perturbations methods, including the retard- 
ing effect of vapor shear stress on the condensate film. 
A comparison of the results obtained by Sparrow et 
al. [4] with those obtained by Chen [5] shows that the 
influence of surface shear stress is negligible at higher 

Prandtl numbers. In order to have a more accurate 
influence of this effect, Koh et al. [6] incorporated the 
interfacial shear stress through the use of sim- 
ultaneous solution of the vapor and condensate 
boundary layer equations and concluded that the 
effect of the shear stress is only significant when the 
condensation rate is sufficiently high. Similar results 
were obtained by Rose [8], using a similarity approach 
confirming the previous problem solved by Chen and 
gave even more accurate expressions for the Nusselt 
number. The state-of-the-art of the laminar film con- 
densation on vertical plates and other condensing pro- 
cesses can be found in ref. [7], and more recently in 
refs [8] and [9]. The foregoing studies are particularly 
applied to isothermal vertical plates, with known tem- 
perature. However, theoretical studies of film con- 
densation processes with non-isothermal conditions 
have received little attention in the literature. In par- 
ticular, Patankar and Sparrow [lo] solved the problem 
of condensation on an extended surface by con- 
sidering the heat conduction in a fin coupled with the 
condensation process. Their numerical solution of the 
governing equations confirms the physical influence 
of the non-isothermal extended surface over the con- 
densing process. Subsequently, it was shown by Wil- 
kins [l l] that an explicit analytical solution is possible 
for the formulation of Patankar and Sparrow [lo]. A 
main conclusion of this article is that the studies of 
condensation on extended surfaces, using the classical 
Nusselt analysis for an isothermal case, form a class 
by themselves and an estimation of the surface area 
requirements of the condenser is not appropriate. In 
order to extend these particular cases with non-iso- 
thermal conditions, Brouwers [ 121 performed recently 
an analysis of the condensation of a pure saturated 
vapor on a cooled channel plate, including the inter- 
action between the cooling liquid, the condensate and 
the vapor His numerical results confirm that this 
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NOMENCLATURE 

specific heat I- nondimensional mass flow rate defined 
nondimensional stream function, in equation (28) 
defined in equation (21) li’ nondimensional parameter defined in 

&? acceleration of gravity equation (4) 
h thickness of the plate A nondimensional thickness of the 
h 
J: 

latent heat of condensation condensed layer, A = 6(x, r)/&, 
Jakob number defined in equation (5) Ar nondimensional thickness of the 

L length of the plate condensed layer at the lower edge 
Pr Prandtl number, Pr = p,c,/l, 6 thickness of the condensed layer 
P>4 similarity variables defined in equation &, thickness of the steady-state 

(53) condensed layer at x = 1, 
qe prescribed heat flux per unit length 6r, = L(Ju/#‘4 
41 actual heat flux per unit length at the Y nondimensional transversal 

liquid-vapor interface coordinate, rl = y/arm 
S Strouhal number defined in equation aspect ratio of the plate, E = h/L 

(17) : thermal conductivity 
t time PI dynamic viscosity of the condensed 
190 evolution time in physical units fluid 
fd characteristic time in the wall VI kinematic coefficient of viscosity of the 

transversal direction condensed fluid 
tdL characteristic time in the wall P density 

longitudinal direction X nondimensional longitudinal 
L characteristic evolution time for the coordinate, x = x/L 

plate t nondimensional time, 
6 characteristic residence time in the r = L,t/(L2p,c,a) 

condensed fluid 790 nondimensional evolution time 
T temperature 0 nondimensional temperature of the 
T, characteristic temperature, condensed fluid, 0 = (T,- T)/T, 

T, = ccq,h/c21, 0, nondimensional temperature of the 
T, temperature of the saturated vapor plate, 0, = (T,- T,.,)/Tr. 
UC characteristic longitudinal velocity of 

the condensed fluid Subscripts 
X,Y Cartesian coordinates 0 initial conditions 
Z nondimensional transversal 

coordinate for the plate, z = y/h. ? 
steady-state conditions 
conditions at the lower edge of the 
plate 

Greek symbols 1 conditions at the condensed fluid 
cl heat conduction parameter defined in W conditions at the wall 

equation ( 12) S conditions at the saturated vapor. 

interaction has to be taken into account in order to 
have more realistic models in this type of process. 

In relation with transient condensation process 
Sparrow and Siegel [13] studied the vertical laminar- 
film condensation for a sudden drop in wall tempera- 
ture. They used the method of characteristics to obtain 
a closed form solution. Chung [14] used a per- 
turbation analysis to extend Sparrow and Siegel’s 
work [13] including nonlinear temperature and non- 
parabolic velocity profiles. In both works a change in 
temperature at the surface facing the saturated vapor 
was assumed. More recently Reed et al. [ 151 studied 
numerically the same problem, but included the com- 
plete energy and momentum equations for the con- 
densed fluid, as well as interfacial shear stresses. In 

this work the transient terms arise from changing con- 
ditions in the vapor. In all of these works, the thermal 
inertia of the wall was not considered. 

The main objective of this paper is to analyse, using 
asymptotic as well as numerical methods, the transient 
laminar film condensation process on a nonisothermal 
vertical flat plate with finite thermal conductivity and 
capacity. In most realistic cases, the thermal inertia of 
the wall where the condensation process is taking 
place, represents the limiting factor of the transient 
process. The wall energy governing equation is 
coupled with the condensing process at one vertical 
face of the flat plate, whereas the flat plate is cooled 
with a known constant external flux q. at the other 
vertical face, which is applied at time t = 0. 
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2. ORDER OF MAGNITUDE ESTIMATES 

The physical model under study is shown in Fig. 1. 
A thin vertical plate with an initial temperature Two, 
length L and thickness h, is placed to its right in a 
stagnant atmosphere filled with saturated vapor with 
a temperature T,. Its upper right corner coincides with 
the origin of a Cartesian coordinate system whose y 
axis points in the direction normal to the plate and its 
x axis points down in the plate’s longitudinal direc- 
tion, that is in the direction of gravity. At time t = 0, 
a known heat flux per unit length, ye, is applied from 
the other surface of the plate. A thin transient con- 
densed layer develops with increasing thickness down- 
stream falling by gravity. The density of the condensed 
fluid, p,, is assumed to be constant and much larger 
than the vapor density. An order of magnitude analy- 
sis gives that the condensed fluid longitudinal velocity 
is of the order, 

where 6(x, t) is the condensed layer thickness, g is 
the acceleration of gravity and v, corresponds to the 
kinematic coefficient of viscosity (= pi/p,). An overall 
condensed mass balance gives then the following 
relationship [ 131 : 

The first term at the right hand side corresponds to 
the accumulation term, while the second term cor- 
responds to the mass outflow. Here t, is the charac- 
teristic time of the condensed film formation, h, 
denotes the latent heat of condensation and q, is the 
actual heat flux per unit surface at the condensed 
liquid-vapor interface, q, = ,$aT/dyl,, where 1, cor- 
responds to the thermal conductivity of the condensed 
fluid. From the final steady-state (q, + qe for t + co) 
relationships (1) and (2), we obtain that the thickness 
of the condensed layer related to the length of the 
plate is given by 

L 1 
Saturated vapor 

75 

Fig. 1. Schematic diagram of the studied physical model. 

& N Ja 6 0 L Y 

li4, 

where y is the still unnamed nondimensional par- 
ameter [ 161 

gL3 y=- 
v: 

and Ja corresponds to the appropriate Jakob number 
and represents the ratio of the sensible heat energy 
absorbed by the liquid to the latent heat of the liquid 
during condensation, defined by 

A boundary layer for the condensed film is obtained 
in the limit Ja/y + 0, which is the case analysed in 
this work. The non-dimensional velocity or Reynolds 
number, Re = u,L/v,, associated to the condensation 
process, is of the order of Re = 0(yJa)“2. The con- 
densed fluid velocity is then of order 

u, - JgLJa. 

Using the order of magnitude estimate (3), from 
relation (2) we obtain the order of magnitude of the 
characteristic time for the condensed film evolution, 
t,, as 

V,L L 
‘p-y- 

gs J- gJa ’ 

which is exactly the same as the residence time in the 
condensed film L/u,. We will assume for simplicity 
that both edges of the plate are adiabatic. However, 
other boundary conditions could be assumed without 
difficulty. Therefore, the global heat flux difference 
between both surfaces is related to the accumulation 
term as 

and also 

21, AT, 
41+qe - ___ h (9) 

In these relationships, pw, c, and i, represent the 
density, specific heat and thermal conductivity of the 
wall material. AT, is the characteristic transversal 
temperature drop at the wall ; T,, corresponds to an 
average value of the wall temperature for t -+ co, and 
t, is the evolution time of the transient process. For 
large values oft, the total temperature change is then 

AL N ATla + ATwx) where AT,, is the characteristic 
temperature drop in the transversal direction for the 
condensed fluid. The steady state version of the 
relationships (8) and (9) is 
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Therefore, the relative temperature drop trans- 
versally on the plate is given by 

aT,, 1 
NP 

AT, l+G+ 
(11) 

Here, E is the aspect ratio of the plate given by 
E = h/L cc 1 and CL is the heat conduction parameter 
which corresponds to the ratio of the heat conducted 
longitudinally by the plate to the heat convected from 
the condensed fluid and is defined by 

i,h Ju ‘j4 
a==?; 

0 
(12) 

For values of u/e’ >> 1, the transversal temperature 
variations in the plate are very small, of order &*/a at 
most. This represents the thermally thin wall limit, 
where the transversal temperature variations are neg- 
ligible compared with the overall temperature drop, 
AT,. On the contrary, for values of a/e’ of order unity, 
most of the transversal temperature drop occurs in 
the solid. This is the thermally thick wall limit. The 
global temperature change is then 

AT, -F 
w 

(13) 

Thus, the final value of the temperature at the 
middle plane of the plate can be written as 

AT 
T wo; -T,-AT,-? 

(14) 

From the order of magnitude estimates (14) and 
(8), we obtain the order of magnitude for t, as 

t, - hp,c, 
Two - T, 
___ (15) 

qe 

We will assume, without any loss in generality, that 
the initial temperature of the plate corresponds to the 
temperature of the saturated vapor, T,, = T,. There- 
fore 

3 t( 
t,-t* -+-, ( 1 2 2 

(16) 

where t, is the wall diffusion time in the transversal 
direction, td - h2p,c,/i,. The corresponding wall 
diffusion time in the longitudinal direction is 
tdL - L2p,c,/1,. For large values of te/td, the tem- 
perature of the wall in the transversal direction 
becomes uniform very rapidly and then the thermally 
thin wall approximation can be used. In this case, 
the temperature of the wall depends mainly on the 
longitudinal coordinate and time and is justified for 
a/s2 >> 1. For large values of t,/t,,, the temperature of 

the wall becomes uniform spatially very rapid, thus 
depending exclusively on time. This ratio is given by 
te/tdl - CL For values of CI of order unity or larger, the 
longitudinal heat conduction is very important and 
has to be retained in the analysis. However, for very 
small values of cx, compared with unity, the longi- 
tudinal heat conduction is unable to compete with the 
heat convection and ceases to be important. 

The ratio of the characteristic residence time in the 
condensed fluid t, to the solid evolution time, t,, 
represents an important parameter denoted by the 
Strouhal number, S defined by 

(17) 

For S << 1, the condensed film can be treated as 
quasi-steady and the limiting factor corresponds to 
the thermal inertia of the wall. On the other hand, for 
S >> 1, the wall can be assumed to be quasi-steady 
and the process is controlled by the condensed film 
production. 

In this paper, we will study the case Ju << 1, which 
in many applications is fully justified, meaning that 
the sensible heat is much lower than the latent heat of 
condensation. Therefore, the production of con- 
densate is rather small, generating a very thin liquid 
film. Typical values for y are of order 7 - 10”. The 
condensed layer thickness is then typically 6 - 10-j& 
thus the boundary layer approximation can be 
applied. The ratio of the thermal conductivities &/i., 
can reach values of the order of 103. Therefore, a 
typical value of c( is c( - h/L and IX/E’ - L/h. In Section 
3 we deduce the governing equations. The thermally 
thin wall approximation is then applied and the 
asymptotic limits tl>> 1 and c( << 1 are studied. The 
asymptotic limit a >> 1 is important for this problem, 
because we can obtain a closed form solution for 
the condensed layer thickness evolution, which gives 
accurate results for values of c( of order unity. Regard- 
ing the values of S, typical values of S are of order 
S - 10m3/c(, which is clearly much lower than unity 
for typical values of IX. This means that the limiting or 
controlling factor for the transient processes is in most 
cases the wall heat capacity, not considered in pre- 
vious mentioned works [13-l 51. 

3. FORMULATION 

The nondimensional governing equations for the 
plate and the condensed fluid are given by 

solid 

condensed fluid 

a2.f af 
aq axaq 

azf - 
a+ I (19) 
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a20 
-=JaPr 
aq2 

where the corresponding symbols are defined in the 
Nomenclature. The nondimensional stream function 
f is defined by 

where zi and 6 correspond to the longitudinal and 
transversal velocity components in the physical units. 
The initial condition for the plate is 0,(x, z, 0) = t&. 
Assuming, for simplicity, the two edges of the plate to 
be adiabatic, the boundary conditions at both edges 
aft given by 

a0 w 
ax x=0,1 

= 0. (22) 

The other two boundary conditions for the plate 
are obtained from equating the heat fluxes at both 
lateral surfaces of the plate, 

and 

do E 
2 

w 

az _,=-i 

(23) 

(24) 

The initial and boundary conditions needed to 
solve the foregoing equations for the condensed layer 
are 

af 0 f‘(x,l? = OJ) = o;g ‘I=o = (25) 

e(x,~=*,T)=o;Lf’ = 0. w (26) 
‘1=A 

Here A(x,t) represents the unknown non- 
dimensional thickness of the condensed layer to be 
obtained as part of the solution of the problem. The 
second condition of equation (26) arises from the bal- 
ance of tangential shear stress at the interface [6]. The 
nondimensional global mass balance in the condensed 
layer is [ 151 

aA ar ae 
s,+3!x= -s& (27) 

where f corresponds to the nondimensional mass flow 
rate of the condensed fluid and is given by 

(28) 

The system of equations (18)-(20) and (27), with 
the corresponding boundary and initial conditions, 
contains four partial differential equations with four 
unknowns, .0x, ‘I, T), 0(x, r, z), A(x, r) and 0,(x, --, 7) 

with six different nondimensional parameters, JCL 7, 
Pr, S, CI and F. In the following sections we analyse 
the case for Ja << 1, with Prandtl numbers of order 
unity. S in general can be much lower than unity or 
at least of order unity. However, it will be assumed in 
the analysis that S CC Jo-‘, so the quasi-steady 
approximation for the condensed film is justified. 
Large values of S are included in the analysis in order 
to compare with the results obtained in previous 
analysis [ 131. 

For small values of Ju, the convective and the tran- 
sient terms of the condensed fluid governing equations 
(19) and (20) can be neglected, giving the classical 
Nusselt’s solution as 

and B0(x,r7,r) = (1 -r~)tI,(x,z = 0,~). (29) 

Therefore equation (27) transforms to 

s aA 3 aA 
2~+--=0,(X,z=O,r). 

4 ax 
(30) 

In the following sections we analyse the cases of 
thermally thin and thick wall cases and explore the 
limits of very large and very small values of parameter 
a. 

4. THERMALLY THIN WALL REGIME (a/t? >> 1) 

For the important case of a thermally thin wall 
(x/e2 >> 1), the temperature variations in the trans- 
versal direction of the plate can be neglected, as shown 
in Section 2. The energy balance equation (18) can 
be integrated in the transversal direction and after 
applying the boundary conditions at both faces, we 
obtain 

pw s_= _l+“e, 
ax2 A (72 ’ (31) 

with the adiabatic conditions at both edges, equation 
(22) and the initial condition &.(r = 0) = Q,, = 0. 
For small Jakob numbers and Prandtl numbers of 
order unity, the governing equations now reduce to 
the coupled nonlinear system given by equations (30) 
and (31). For the thermally thin wall regime, these 
equations can be integrated along the longitudinal 
coordinate resulting in 

(32) 
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e - 0 2 = ]-2, 
A (33) 

where G = 1: @(x,s) dx, for any variable and 
Ar = A(x = 1, T). Ar is the normalized thickness of the 
condensed fluid at the lower edge and represents the 
most important dependent variable to be obtained in 
the present work. A, is related to the condensed mass 
outflow as indicated by equation (29). Equation (30) 
also can be written as 

0,. - C-1 A 
= Sg +A:. 

For S = 0, the system of equations reduce to a 
differential equation for Ar, with the solution 

c 4 .s’d.s 
2=3 -- 

,, I-s 

= -3Ar- 5 +&tan-’ 

V 

-ln(l -Ar)+ 
ln(l +Ar+Ai) 

2 ) (35) 

which is independent of CL Therefore, c( does not have 
any influence on the evolution time for S = 0. The 
steady state solution, Ar = 1, is reached for r -+ co. In 
order to compare the different solutions obtained in 
this work, we define the evolution time as the time 
needed to obtain 90% of the steady final thickness of 
the condensed fluid at the lower edge of the plate. 
Thus 

r,“(S=0)=3 ~ 2 0.9553.. (36) 

and 

(j&S = 0) = iA; rr 0.4929. (37) 

For S = 0, the overall plate temperature increases 
very slowly compared with the increase of the con- 
densed layer thickness. Figure 2 shows the evolution 

7 
,,~~I,~“~~~~,,~~‘~“‘,~I~‘~,~~‘~‘I~~””~~’ 

0.0 0.2 0.4 0.6 0.8 1.0 

Fig. 2. Evolution of the nondimensional condensed layer 
thickness Ar and the averaged plate temperature 8, as a 
function of 5 for S = 0, using the thermally thin wall approxi- 

mation. 

of Ar and 8, as a function of the nondimensional time 
r obtained from equation (35). 

4.1. Asymptotic limit c( -+ r*-), S + 0 
This is a regular limit for LY and singular for S. For 

very large values of the parameter c(, the leading term 
nondimensional temperature of the plate, f3,, changes 
very little (of order of a-‘) in the longitudinal direc- 
tion, as shown in Section 2. Due to the fact that 
the evolution of the condensed layer mass outflow is 
almost insensitive to the parameter a as shown in the 
previous section, we retain only the leading term in x 
and explore the influence of the Strouhal number S 
on the transient process. From equation (32), we 
obtain after neglecting terms of order S’ 

(38) 

where cp(r) = 4/3& From equations (33), (34) and 
(38), we obtain 

(39) 

Assuming a solution of the form 

V(Z) = f S’(p,(r),A(x,r) = i S’A,(x>r)> (40) 
,=” ,=” 

and introducing it into equations (39) and (30), we 
obtain, after collecting terms of the same power of S, 
the following set of equations : 

(42) 

etc., with the following initial conditions 

q,(O) = A&, 0) = Ai(O, 5) = 0. (44) 

The first term at the right hand side of equation 
(42) must be retained due to the singular character of 
the problem in this limit. The leading term solution in 
S has been obtained in the previous section, after 
solving equation (41) with the corresponding initial 
condition. We need to solve equation (42) in order to 
be able to solve the first-order equation (43). The 
transient term has to be retained only in a boundary 
layer of order S in r. Defining the appropriate inner 
variables as 

‘pO = Sg, Ai = 2S+, r = Sa and x = 3S<, (45) 

we obtain the inner equations as 



Transient conjugate condensation process 2221 

The system of equations admits a similarity solution 
by introducing the similarity variables C#J = (r2$(s) and 
s = t/f?, resulting in 

(47) 

with the condition $(s + co) = l/2. The solution is 
clearly $ = l/2, for s > 1. For s -+ 0, the asymptotic 
solution is $ - J. J In the outer variables, this behav- 
iour can be written as A0 N (4/3)“4 (TX)"~, for T - 0, 
which is exactly the same as using only the outer 
solution. Thus, we can use the leading term solution 
to compute A”, A,, = (P,\‘~x”~, resulting in 

& = ;(p;” 
7 and Ati = $(P:‘~. (48) 

Using this result, the first order equation (43), takes 
the form 

3 dq, 3 qnl 2 1 
- 4 dz 4 (pb.4 45 T(l-cp;i”). 

qpo’ 
(49) 

This equation must be solved numerically. Expand- 
ing Are in a Taylor series around 0.9 and retaining 
only the linear contribution, we can obtain finally that 
for Ar = 0.9, the nondimensional time up to the first- 
order in S is given by 

Tq,,(s) = T,,(S= O)+S!'= T,,,(s= 0)+0.1914S, 

(50) 

where Y = -A,,/(dA,,/dr). Figure 3 shows Afo = cpi’“, 
Af, % 3q,/(4!&‘4) and r as a function of T. 

4.2. Solution,for x -+ 0 
This is a singular limit due to the appearance of two 

boundary layers close to both edges in order to satisfy 
the adiabatic conditions. Outside of these inner zones, 
longitudinal heat conduction through the plate is neg- 
ligible and the system of equations, up to the leading 

Fig. 3. Are. Af, and r = -A.,,/(dA,&), as a function of T in 
the limit S + 0, for the thermally thin wall regime. 

order, transform to the system of two ordinary differ- 
ential equations 

3 dp4 
q= -;S;“P’+Sp’fqd;. 

di 
(52) 

where 

A(x> 7) 
P(i) = ___ T ’ 

k(XJ) and Y(i) = __ 
X ;=- 

T T3 

(53) 

The transformed initial conditions are p(0) = 
q0 = (0). For small values of [, the solution of equa- 
tions (51) and (52) is 

p(i) = q(i) - [“3 for [ --t 0, 

which gives the final steady-state solution 

A&, T -+ co) = &(x,T -+ CD) = x"j. 

(54) 

(55) 

The nondimensional thickness of the 
layer at the lower edge (x = 1) is then 

Af(x = 1,~) = zp L 
0 T3 

(56) 

condensed 

In order to work with the relevant variables A, and 
BWf = 6,(x = 1, T), we redefine the variables in the fol- 
lowing form : 

Therefore, the governing equations (51) and (52) 
transform to 

with the conditions Af(0) = Q,,(O) = 1, representing 
the final steady state solution. The system of equations 
(58) has two solutions for a given value of S. The first 
one corresponds to the trivial solution Af = BWf = 1, 
which represents the problem steady solution. 
However, this solution cannot reproduce the initial 
conditions, represented by Af -+ 0 and BWf -+ 0 for w -+ 
cc. For a finite non-zero value of S, the trivial solution 
is the appropriate one for o < 1. Thus, the steady 
state solution is achieved for a finite value of the 
nondimensional time T. For w > 1, the solution bifur- 
cates to another branch which reproduces correctly 
the initial conditions. This second branch corresponds 
to the transient solution. This can be shown using a 
local analysis of the trivial solution close to w = 1. 
Assuming 
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&f = 1 +&,(fi),Af = 1+~(8) and w = l+Q, 

(59) 

with E,, &A, ti << 1, the system of equations reduces to 

(60) 

For values of S of order unity, we obtain 
d&,/da N (3/4)&,. This shows that the trivial solution 
is the appropriate one for 0 < 0. For large values of 
S, but still S << Jam’, we obtain that E, 2~ E,, and 

d&A - 3&, 
__ for S >> 1. 

zY2EA-oiY (61) 

The solution is then cA 2~ -a. For this case we can 
obtain a closed form solution for the transient branch 
as Af = Bwf = l/w, which is clearly valid for o > 1. 
Thus, we recover the same result obtained in ref. [13]. 
Therefore 

Af = i or zg,,(S) = 0.9s. (62) 

The nondimensional averaged plate temperature is 
in this case 

T 1 T4 

=s 4s’ ---(-I 
(63) 

or 

e,,ll = 0.735975.. .) (64) 

which is very close to the final steady-state value of 
3/4. In this case, the plate temperature evolution fol- 
lows closely the evolution of the condensed layer 
thickness. Figure 4 shows the profiles of A1 and 8, as 
a function of z/S for the limit S + co. 

Fig. 4. Evolution of the nondimensional condense: layer 
thickness Ar and the averaged plate temperature 0, as a 
function of T for S + co, for the thermally thin wall approxi- 

mation. 

5. THERMALLY THICK WALL APPROXIMATION 
(a/e2 _ 1) 

For values of t(/E2 of order unit and E -+ 0, the longi- 
tudinal heat conduction is already very small and can 
be neglected, except in small regions close to the edges 
of the plate. Only the outer solution (no longitudinal 
heat conduction through the plate) is to be analyzed 
in this limit. The energy balance equation for the plate 
then reduces to 

where t = 1x7/e’ is the appropriate nondimensional 
time for the thermally thick wall regime and 
rp, = &/E~. Equation (65) has to be solved with the 
initial and boundary conditions 

(66) 

where $J = aA/e2. The condensed layer thickness evol- 
ution (30) transforms to 

-2 3ap 
q?,(z=o)=;$jf+-, 

4 ax 
(67) 

where x = u3/&. Therefore, the parametric set 
reduces in this limit to only one free parameter, the 
Strouhal number S. The steady-state solution is 

&(z -+ co) = x”3 , cp,Jr + 00) = R”3 -z. (68) 

For large values of S, the system of equations is 
reduced to that obtained previously in Subsection 4.2. 
Thus, they admit the same solution given by 

0.9sci 

(69) 

However, it should be noted that the physical evol- 
ution times for both cases are different. 

6. RESULTS AND CONCLUSIONS 

For values of c( and S of order unity, it is necessary 
to solve numerically the governing equations, with the 
respective boundary and initial conditions. We will 
explore the validity of the thermally thin and thick 
wall approximations. The numerical scheme used here 
is described in the Appendix. The evolution time in 
physical units for the thermally thin wall regime 
(a/e” >> 1) does not depend on the plate thermal con- 
ductivity and is given by 
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Fig. 5. Nondimensional evolution time Q+ as a function of 
S, for the thermally thin wall approximation. 

t 
pWcWhL Ja ‘I4 

go=- - 
0 1, Y 

GIG?. (70) 

Figure 5 shows z,(s) as a function of S for two 
limiting values of CL in the thermally thin wall regime. 
The two asymptotic solutions for S -+ 0 and S + co 
are also plotted. For S i 0.2, the asymptotic solution 
zw(s) - 0.9553+0.1914S represents a very good 
approximation. On the other hand, the asymptotic 
solution z&s> - 0.9S, gives accurate results for 
S > 10. The evolution time is almost insensitive to the 
value of cI for values of c( such as a>> Ed. Figure 6 shows 
the nondimensional evolution time zgO as a function of 
CI, for different values of the parameter S. The selected 
value for the plate aspect ratio E is E = 0.1. The solu- 
tion for the thermally thin and thick wall approxi- 
mations are also plotted. For large values of c(, the thin 
wall approximation is appropriate, indicating that zgO 
is almost insensitive to CL However, the thermally thick 
wall approximation also gives very good results, even 
for large values of TV. The reason is because our most 
important parameter Af is almost independent of CL Ar 

Fig. 6. Nondimensional evolution time zw as a function of CI, 
for different values of S. The thermally thick and thin wall 

approximations are also shown. 

is almost independent of tl, but not the A profiles along 
the plate. However, for values of S of order unity and 
CI - &2 (a - 10-Z), Q,, begins to increase, thus indi- 
cating that the thermally thin wall approximation is 
not valid any more. However, the thermally thick 
approximation can be used for any value of a in order 
to calculate AP The discrepancies between the results 
obtained for A, using both approximations (thin and 
thick wall regimes) disappear as the value of S 
increases to values much larger than unity. 

In this paper, the transient condensation process of 
a saturated vapor in contact with one surface of a thin 
vertical plate has been analyzed using asymptotic, as 
well as numerical, techniques for small values of the 
Jakob number. A uniform prescribed heat flux is 
applied at t = 0, at the other vertical surface of the 
plate. The finite thermal conductivity of the plate 
material allows one to transfer heat by conduction 
upstream through the plate, thus changing the math- 
ematical character of the problem from parabolic to 
elliptic. Assuming the plate to have adiabatic leading 
(upper) and trailing (lower) edges, the heat convection 
through the lateral surface of the plate, affected by the 
axial heat conduction, governs the transient evolution 
of the plate temperature, the condensed layer thick- 
ness and the overall condensed fluid mass outflow 
rate. The two asymptotic limits of thermally thin and 
thick wall regimes have been analyzed for this con- 
densation process. We also explored the whole range 
of the Strouhal number 0 < S << Jam’. We obtain in 
closed form the evolution time for small values of S, 
showing the Af is insensitive to the value of CI, for the 
thermally thin wall regime. However, there is a big 
influence of a, for the thermally thick wall regime. For 
large values of S, that is without considering the plate 
thermal inertia, the solution for the thermally thin and 
thick wall regimes give exactly the same asymptotic 
results. The wall thermal inertia is found to be the 
controlling factor for the transient condensation pro- 
cess in most practical cases. 
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APPENDIX 

The heat diffusion equation (18) is numerically integrated 
using central differences for both spatial directions. The tran- 
sient term is evaluated using the conventional Euler method. 
We used a quasi-linearization technique for the nonlinear 
terms in the evolution of the condensed layer thickness equa- 
tion (30) in the form 

A” = Az+nAE-‘(A-A,) = nAz_' A-(n-])A:, 

(Al) 

where the subindex a represents the value obtained in a 
previous iteration. Thus the term aA”/& is represented as 

dA4 ?aA ix’4A.-+12A;A(;4-12A:s, 
ax ax ax 

(42) 

where the spatial derivatives are discretized using central 
differences, while the transient derivatives use the Euler 
method. A few iterations are needed to obtain a high accu- 
racy for the results, For the numerical calculations we used 
a grid size of 21 points in the transversal direction z, and 71 
points in the longitudinal direction, x. The computations 
were done with the Cray-YMP computer at UNAM in Mex- 
ico City, using the Linpack routines. 


